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SUMMARY

Multi-type recurrent event data arise when two or more di�erent kinds of events may occur repeatedly
over a period of observation. The scienti�c objectives in such settings are often to describe features
of the marginal processes and to study the association between the di�erent types of events. Interval-
censored multi-type recurrent event data arise when the precise event times are unobserved, but intervals
are available during which the events are known to have occurred. This type of data is common in
studies of patients with advanced cancer, for example, where the events may represent the development
of di�erent types of metastatic lesions which are only detectable by conducting bone scans of the entire
skeleton. In this setting it is of interest to characterize the incidence of the various types of bone lesions,
to estimate the impact of treatment and other covariate e�ects on the development of new lesions, and
to understand the relationship between the processes generating the bone lesions. We develop joint
models for multi-type interval-censored recurrent events which accommodate dependencies between
di�erent types of events and enable one to examine the covariate e�ects via regression. However, since
the marginal likelihood resulting from the multivariate random e�ect model is intractable, we describe
a Gibbs sampling algorithm to facilitate model �tting and inference. We use generalized estimating
equations for estimation and inference based on marginal models. The �nite sample properties of the
marginal approach are studied via simulation. The estimates of both the regression coe�cients and the
variance–covariance parameters are shown to have negligible bias and 95 per cent con�dence intervals
based on the asymptotic variance formula are shown to have excellent empirical coverage probabilities
in all of the settings considered. The application of these methods to data from a trial of women with
advanced breast cancer provides insight into the clinical course of bone metastases in this population.
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1. INTRODUCTION

Multi-type recurrent event data arise when two or more di�erent types of events may occur
repeatedly over a period of observation. The scienti�c objectives in such settings are often
to characterize features of the marginal processes generating the particular types of events
and to study the association between the di�erent types of events. Counting process models
provide a very powerful framework for the analysis of such event history data when subjects
are under continuous observation [1]. Random e�ect models [2] and marginal models [3] are
also convenient to adopt in this setting.
Interval-censored multi-type recurrent event data arise when the event times are not known,

but when one can specify intervals during which the events occurred. This type of data is
common in studies of patients with advanced cancer, for example, where the events may rep-
resent the development of di�erent types of metastatic lesions only detectable upon completion
of bone scans of the entire body. In this setting it is of interest to characterize the incidence
of the various types of bone lesions, to estimate the impact of treatment and other covariate
e�ects on the development of new lesions, and to understand the association between the
di�erent types of bone lesions. Numerous examples exist in other settings when the events of
interest are only detected by periodic intensive examination. For example, in gastroenterology
studies it is of interest to detect di�erent types of polyps via periodic endoscopy, in urology
di�erent types of recurrent super�cial bladder cancer tumours may be detected via periodic
examination, and in studies of osteoporosis di�erent types of skeletal changes may be of
interest and detectable only by periodic radiographic examination.
Several non-parametric and semiparametric methods have been developed for estimating

and comparing rate functions for univariate point processes subject to interval-censoring. Thall
and Lachin [4] consider this problem and develop non-parametric tests for comparing mean
functions between groups. Sun and Kalb�eisch [5, 6] consider the most extreme form of
interval-censoring and develop nonparametric estimates of cumulative mean functions for point
processes under current status and panel observation schemes. Staniswalis et al. [7] describe
methods for �tting semiparametric regression models for interval-censored recurrent event
data using splines. More recently, Lawless and Zhan [8] develop convenient methods for
�tting regression models for univariate interval-censored recurrent event data via maximum
likelihood based on a gamma-Poisson random e�ect model, and via estimating functions based
on assumptions regarding the �rst and second moments. Both frameworks discussed in Lawless
and Zhan [8] exploit the tractability and robustness resulting from speci�cation of piecewise
constant baseline rate functions. However, not much work has been done in the context of
interval-censored multi-type recurrent events.
The purpose of this paper is to develop methods for the analysis of multi-type interval-

censored point process data. We considered approaches based on mixed Poisson models and
marginal methods. With the former approach, each individual is thought to have a latent vector
valued subject-speci�c e�ect, where the kth component of this vector helps characterize their
rate for the kth event type. These latent random e�ects may be thought of as representing
unobserved covariates which, if available, could be used to characterize the variation in the
Poisson rates between event types and among subjects in the population. By making these
latent subject e�ects stochastic, a correlation is induced between counts over disjoint intervals
for each subject and event type, and by making these random e�ects correlated, a correlation is
induced between counts from each subject for di�erent types of events. Marginal methods are
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typically formulated based on generalized estimating functions which are constructed from
means and variances of the unconditional distribution obtained by marginalizing over the
random e�ects. Since these estimating functions do not rely on full speci�cation of the model
and robust variance estimates are available for estimating functions, this approach is often
viewed as providing more robust inferences than full models.
We describe methods based on a mixed Poisson model with piecewise constant baseline

intensities and multivariate log-normal random e�ects. The multivariate log-normal random ef-
fect distribution is chosen because it is a so-called genuine multivariate distribution [9] which
enables one to separately characterize the marginal variance functions and the associations
between the di�erent types of event processes. Then the marginal likelihood is obtained by
averaging over the random e�ect. Since the marginal likelihood is intractable for this model,
a Bayesian formulation and Gibbs sampling algorithm [10] are described which can be con-
veniently implemented using the software package BUGS [11]. Since the covariate e�ects can
be interpreted more directly in the marginal model approach, generalizations of the univariate
marginal methods for interval-censored recurrent events developed by Lawless and Zhan [8]
are also provided to deal with multi-type recurrent event data.
The remainder of the paper is organized as follows. In Section 2, we introduce notation and

de�ne piecewise constant functions for baseline rates. In Section 3, we set up the random e�ect
model for multivariate recurrent event processes, and describe a Gibbs sampling algorithm.
Generalized estimating equations are given in Section 4 for estimation and inference in the
context of marginal models for multi-type interval-censored recurrent event data. Both the
random e�ect and marginal methods of analysis are applied to data on the occurrence of
three types of bone lesions from a trial of patients with advanced breast cancer [12]. The
results are reported in Section 5. The �nite sample frequency properties of the marginal
methods are assessed via simulation studies and the results are reported in Section 6. General
remarks are made in Section 7.

2. SPECIFICATION OF THE RATE FUNCTIONS

Consider a sample of m subjects in which each subject is at risk of J di�erent types of recur-
rent events. Let i index subjects and j index the event types so i=1; : : : ; m and j=1; : : : ; J .
Let Nij(s) be the number of type j events occurring over the interval (0; s] for subject i,
where {Nij(t); t¿0} arises from a point process with rate function �ij(t)=E{dNij(t)}=dt and
cumulative mean function

�ij(t)=E{Nij(t)}; i = 1; : : : ; m and j=1; : : : ; J (1)

Here �ij(t) can be written as an integral of the rate function,

�ij(t)=
∫ t

0
�ij(s) ds

Let 0= bij0¡bij1¡ · · ·¡bijkij = �ij denote the times at which process j of subject i is observed.
As a result, the numbers of events in the interval Rijk =(bij; k−1; bijk], k=1; : : : ; kij are known
and denoted by nijk =Nij(bijk) − Nij(bij; k−1), k=1; : : : ; kij respectively, but the exact event
times are unobserved. The observation times {bijk}’s may be �xed or random, but when they
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are random they are assumed to be predictable, which means that each observation point
is conditionally independent of the corresponding count given the history of the observed
processes and recurrent event [8].
Suppose that associated with subject i and process j is a p× 1 covariate vector xij=(xij1; : : : ;

xijp)′. The e�ects of covariates can be modelled a number of ways, but it is common to adopt
a multiplicative rate model of the form

�ij(t|xij)= �0j(t) exp(x′
ijRj) for i=1; : : : ; m; and j=1; : : : ; J

where Rj is a p× 1 vector of regression coe�cients and �0j(t) is the baseline rate function for
the type j events. In general, the baseline rate �0j(t) can be modelled parametrically, weakly
parametrically by piecewise constant intensities, or nonparametrically. We consider piecewise
constant rate functions which are convenient to work with and provide robustness.
Let aj=(aj0; aj1; : : : ; aj; rj)

′ be vectors of cut-points satisfying 0= aj0¡aj1¡ · · ·¡aj; rj =
+∞, for j = 1; : : : ; J . For piecewise constant rate functions we set �0j(t)=�jh for t ∈Ajh=
(aj;h−1; ajh], h=1; : : : ; rj, j=1; : : : ; J and let �= {�jh; j=1; : : : ; J ; h=1; : : : ; rj}. The cumulative
mean function can then be written as

�ij(t) =
∫ t

0
�0j(s) ds exp(x′

ijRj)

=�0j(t) exp(x′
ijRj)

where �0j(t)=
∑rj

h=1 �jhajh(t) and ajh(t)= max{0;min(ajh; t)−aj;h−1} equals the length of the
intersection of interval (0; t] with interval Ajh. The integral of the baseline intensity function
over the interval Rijk is

�0ijk(�)=
∫
Rijk

�0j(s) ds=
rj∑

h=1
�jhajh(i; k) (2)

where ajh(i; k) is the length of the intersection of the interval Rijk and Ajh. This is calculated
as ajh(i; k) = max{0;min(ajh; bijk)−max(aj;h−1; bij;k−1)}. In most situations it is satisfactory to
use piecewise constant baseline intensities with 4–10 pieces [8].

3. THE RANDOM EFFECT APPROACH

To model the associations between di�erent types of event processes here we introduce
distributional assumptions for the event process. Speci�cally, we assume that conditional on
the random e�ect uij and covariate vector xij, Nij(t) has an intensity function

�ij(t|uij;xij)= uij�0j(t) exp(x′
ijRj) (3)

where i=1; : : : ; m, and j=1; : : : ; J . The multivariate random e�ects ui = (ui1; : : : ; uiJ )′ are
assumed to be independent and identically distributed with a cumulative joint distribution
function G(u;M). This conditional intensity function corresponds to a mixed Poisson regression
model since the intensity function is the same as the rate function for Poisson processes. The
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baseline rate functions �0j(t), j=1; : : : ; J , are taken to be piecewise constant functions as
described in Section 2.
For convenience of notation, we de�ne

�ijk(R; �)=�0ijk(�) exp(x′
ijRj) and �ij+(R; �)=

Kj∑
k=1
�ijk(R; �)

Since the observation points are assumed to be noninformative, under the mixed Poisson
process assumption we specify the conditional likelihood for subject i as

Li(R; �|uij;xij)=
J∏

j=1

[
unij+
ij exp{−uij�ij+(R; �)}

Kj∏
k=1
�nijk

ijk (R; �)
]
;

where nij+ =
∑ Kj

k=1 nijk . If X=(R′; �′;M′)′ and Ai(R; �)=
∏J

j=1

∏Kj

k=1 �
nijk
ijk (R; �), the marginal like-

lihood for subject i is given by

Li(X)=Ai(R; �)
∫ ∞

0
· · ·

∫ ∞

0

J∏
j=1

unij+
ij exp

{
−

J∑
j=1

uij�ij+(R; �)
}
dG(ui;M) (4)

There are several classes of multivariate random e�ect distributions one could consider in-
cluding shared frailties (ui1 = ui2 = · · · = uiJ ), generalized shared frailties (uij= eajwi for any
aj ∈R and random variable wi), additive frailties (uij= vi0 + vij, with vi0; vi1; : : : ; viJ indepen-
dent), or log normal frailties (ui follows a multivariate log normal distribution). Here we use
multivariate log normal frailties since it accommodates both positive and negative correlations
between frailties and does not impose a direct relationship between the variances and the cor-
relations. In this case, the required integrals in (4) can be approximated by Gauss–Hermite
quadrature [13].
Let ‘(X)=

∑m
i=1 ‘i(X) denote the log likelihood for all subjects. A Newton–Raphson algo-

rithm can be applied to obtain the maximum likelihood estimate X̂ of X. If X(0) denotes an
initial value of X, we have,

X(k+1) = X(k) +
{

− @2‘(X)
@X@X′

∣∣∣∣
X(k)

}−1 {
@‘(X)
@X

∣∣∣∣
X(k)

}
By iterating the above equation until the di�erence between X(k+1) and X(k) is below some
speci�ed tolerance, we obtain the maximum likelihood estimate. The maximum likelihood
estimator X̂ is consistent and asymptotically normally distributed with the variance–covariance
matrix estimated by

[asvar( X̂)= −
{

@2‘(X)
@X@X′

∣∣∣∣
X̂

}−1

Therefore the observed information matrix can be used to carry out Wald tests for e�ects of
covariates and to assess the association among di�erent types of events.
One may alternatively consider the use of a Gibbs sampler [10] to facilitate Bayesian

inference in the context of fully speci�ed models such as this. To help in the speci�ca-
tion of the conditional dependencies between the parameters, random e�ects, and responses
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Figure 1. Directed graphical model for the interval-censored multivariate recurrent events process.

in the full model, a directed graphical model [11] can be constructed. In directed graphs,
quantities are represented as nodes and arrows which run into nodes to indicate how some
quantities (parents) in�uence other quantities (children). For the currently speci�ed model,
we make the assumption that, given its parent node, each node is independent of all other
nodes in the graph except for its descendants. The directed graph for the model speci�ed for
interval-censored multivariate recurrent events is given in Figure 1. Here the node (xij) is a
constant node (denoted by a rectangle) which is �xed by the design of the study. All the other
nodes are stochastic nodes (denoted as circles in the graph). The stochastic nodes can be ob-
served data (such as nijk in Figure 1) or unobserved parameters (such as �; �j; Rj; uij;�0jk ; �ijk).
There are two types of links in Figure 1. A dashed arrow indicates a logical function (e.g.
�ijk = uij�0jk(�j) exp(xijRj)), whereas a solid arrow indicates a stochastic dependency (e.g.
nijk ∼Poisson(�ijk)).
Bayesian Inference using Gibbs sampling (BUGS) [11] is a package of routines which have

been written speci�cally to facilitate implementation of the Gibbs sampler for a wide range of
problems such as the one at hand. One of the appealing features of the BUGS package is that
the full set of conditional distributions required for Gibbs sampling are derived by specifying
a rather limited set of conditional distributions. Appendix 1 gives the distributions speci�ed
as well as the BUGS code for �tting the model of interest. For computational convenience,
instead of parameterizing the variance–covariance matrix �, we parameterize the unknown
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variance–covariance parameters of the vector of random e�ects vi= log(ui) directly in the
linear predictor as follows:

vi1 = !11zi1
vi2 = !12zi1 +!22zi2

· · ·
viJ = !1J zi1 +!2J zi2 + · · ·+!JJ ziJ

(5)

where the latent random e�ect zi, has a completely speci�ed standard multivariate nor-
mal distribution. The variance–covariance matrix of {vi1; : : : ; viJ}′ is obtained by computing
�= [�jk]J×J , with

�jk =
j∧k∑
‘=1

!‘j!‘k ; 16j; k6J (6)

where j ∧ k= min(j; k). We �t this model to the data from Hortobagyi et al. [12] in Section 5.
With Bayesian ‘non-informative’ priors, one can use the median of the posterior distribution as
a point estimate and symmetric 100 (1−�) per cent credibility intervals for interval estimation.
Two-sided probability values, somewhat analogous to p-values in a frequentist setting, can be
computed by doubling the tail area beyond the null value [30]. In what follows, ‘CI’ and
‘p-value’ under Bayesian analyses should be taken to mean credibility interval and probability
value respectively, with Bayesian signi�cance testing based on the latter.
The simulated values from successive iterations of BUGS may be analysed using the con-

vergence diagnosis and output analysis software (CODA) of Best et al. [14] to diagnose the
convergence of the algorithm. For example, both the Geweke z score tests [15] and the Hei-
delberger stationary tests [16] were used as convergence diagnostics for the output of Gibbs
samplers.

4. MARGINAL METHODS FOR INTERVAL-CENSORED DATA

Here we consider a natural generalization of the estimating function approach described for
univariate interval-censored recurrent event processes by Lawless and Zhan [8]. The robustness
arises from that fact that the estimating functions are derived based only on assumptions about
the �rst two moments of the processes.
Using the same notation for nijk and Rijk as in Section 2, we let n ij=(nij1; : : : ; nij;kij)

′

for j=1; : : : ; J , and n i=(n′
i1; : : : ; n

′
iJ )

′, i=1; : : : ; m. Under the random e�ects formulation of
Section 3, for each of these J counting processes, the marginal moments for nijk can be
speci�ed as:

E(nijk) =�ijk =�0ijk(�) exp(x′
ijRj)

var(nijk) =�ijk + �2j�
2
ijk

cov(nijk ; nij‘) =�2j�ijk�ij‘ for all k �= ‘

where �0ijk(�) is given by (2) and var(nij) = �2j . Note that the mean and covariance func-
tions are motivated by a mixed Poisson formulation but no such distributional assumptions

Copyright ? 2004 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:671–691



678 B. E. CHEN ET AL.

are required for estimation and inference of regression coe�cients. Again we use piecewise
constant functions to approximate the baseline rates but we use generalized estimating equa-
tion (GEE) methodology to take the association between the di�erent processes into account.
The random e�ect formulation above gives a working inter-type correlation structure of the
form

cov(nij1k ; nij2‘)=  j1j2�ij1k�ij2‘ for 16j1¡j26J

where cov(nij1 ; nij2) =  j1j2 . Let M=(�1; : : : ; �J ; { j1j2 ; j1¡j2})′ be the parameter vector for the
covariance matrix. We denote the marginal means for the jth process by �ij=(�ij1; : : : ;�ij; kij)

′.
Letting ki= ki1 + · · · + kiJ , we denote the ki × 1 column vector for the marginal means
�i=E(n′

i1; : : : ; n
′
iJ )

′=(�′
i1; : : : ;�′

iJ )
′, and a ki × ki working correlation matrix, �i=[�i;j1j2 ]ki×ki ,

where �i;jj= var(n ij)=diag(�ij)+�2j�ij�
′
ij for j=1; : : : ; J , and �

′
i; j2j1 =�i; j1j2 = cov(n ij1 ; n ij2)

=  j1j2�ij1�
′
ij2 for 16j1¡j26J . From the theory of generalized estimating equations [18], the

generalized estimating equations for R and � are then given by

U1(R; �)=
m∑
i=1

D′
i �

−1
i (n i −�i)= 0 (7)

where Di= @�i=@(R′; �′) is a ki ×p derivative matrix of �i with respect to (R′; �′)′.
If the value of M is known, (7) is a set of equations for R and �. By solving equation (7)

using Newton’s method, for example, one can obtain the estimates R̂ and �̂. Under mild con-
ditions on the event processes and the observational scheme [19], both R̂ and �̂ are consistent
and asymptotically normally distributed as m→ ∞. To estimate the unknown parameter M, the
following moment equations are useful,

U2; j(�j) =
m∑
i=1

wij
∑
k

{(nijk − �ijk)2 − (�ijk + �2j�
2
ijk)}; j=1; : : : ; J

U2; j1j2 (�) =
m∑
i=1

wi; j1j2
∑
k; ‘

{
(nij1k − �ij1k)(nij2‘ − �ij2‘)

 j1j2�ij1k�ij2k‘
− 1

}
; j1¡j2 (8)

where wij and wi; j1j2 are weight functions. It is perhaps most common to let wij=1 but
alternative weight functions are possible [8]. To estimate X=(R; �;M)′, given an initial value
M(0), one can solve (7) to get R(1); �(1). Then, upon inserting R(1) and �(1) in (8) for R and
� respectively, this in turn can be solved to give M(1). By iterating between (7) and (8),
the estimates are obtained when (R(k); �(k);M(k)), (k=1; 2; : : : ; ) converges to a stable value,
X̂=(R̂; �̂; M̂)′, and hence the di�erence between solutions in successive iterations becomes
negligible.
Under regularity conditions [19], even if the form of the �i is incorrectly speci�ed, the

estimate (R̂′; �̂′)′ is consistent and asymptotically normally distributed as m→ ∞. The robust
estimate of the asymptotic variance–covariance matrix of

√
m{(R̂′ − R′); (�̂′ − �′)} is given by

M̂−1
0 M̂1(M̂ ′

0)
−1 (9)
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with M̂0 =m−1∑m
i=1D̂

′
i�̂

−1
i D̂i and M̂1 =m−1∑m

i=1D̂
′
i�̂

−1
i (n i − �̂i)(n i − �̂i)′�̂−1

i D̂i [17]. Here
estimates of �i ; Di and �i are obtained by evaluating the corresponding functions at X̂.
To conduct inference on the parameter M, the asymptotic distribution of

√
m{(R̂′ − R′); (�̂′ − �′); (M̂′ − M′)}′

is required. For this to be valid, the structure of the working covariance matrix needs to be
correctly speci�ed. If the random e�ect follows a multivariate log-normal distribution and
conditionally on this random e�ect, the processes are governed by rate functions �ij(t), the
�rst two marginal moments of the counting processes are correctly speci�ed [3]. Thus, the
estimates (R̂′; �̂′; M̂′)′ are consistent and asymptotically normally distributed with asymptotic
variance–covariance matrix consistently estimated by

�̂= P̂−1Q̂(P̂−1)′ (10)

where Q̂ is the variance–covariance matrix of the estimating function evaluated at X̂ and P̂ is
the expected value of the minus �rst order partial derivative of the estimating function, also
evaluated at X̂.
The above results give the asymptotic joint distribution of the baseline rate, regression

coe�cients, and variance–covariance parameters. A primary interest in many trials is in testing
for treatment e�ects. The treatment covariate, denoted by xj1 say, will be used in marginal
models for each of the processes. The asymptotic joint distribution of the associated regression
coe�cients will facilitate construction of global tests of signi�cance of no treatment e�ect.
Weights for these tests will be taken to maximize power to detect treatment e�ects in the
spirit of Wei et al. [20] for multivariate survival data.
Here we describe how to carry out a global test of treatment e�ects based on the estimator R̂.

Let �j1 denote the coe�cient of the treatment covariate xj1 on the jth process. We now write
X=(X′

1; X′
2)

′ where X1 = (�11; �21; : : : ; �J1)′ and 	2 is the vector containing all other parameters.
The asymptotic variance–covariance matrix of

√
m( X̂ − X) can be estimated by �̂, as given

by (10). We partition �̂ into four blocks:

�̂=

�̂11 �̂12

�̂21 �̂22


conformably with the partition of X=(X′

1; X′
2)

′. Our objective is to test the null hypothesis of
no treatment e�ect on all of the processes, i.e.,

H0 : �11 =�21 = · · · =�J1 = 0

Under H0, we know that the marginal distribution of
√
m (�̂11; �̂21; : : : ; �̂J1)

′ is asymptotically
normally distributed with the mean vector 0=(0; 0; : : : ; 0)′ and variance–covariance matrix
estimated by �̂11. Thus, the test statistic

T =(�̂11; �̂21; : : : ; �̂J1)�̂
−1
11 (�̂11; �̂21; : : : ; �̂J1)

′ (11)
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follows an asymptotic 
2 distribution with J degrees of freedom under H0. Furthermore, sup-
pose that there is a common treatment e�ect for all processes such that �11 =�21 = · · · =�J1 =
�0. Wei and Johnson [21] show that �0 can be estimated e�ciently by a linear combination
of �̂11; : : : ; �̂J1,

�̂0 =
J∑

j=1
wj�̂j1 (12)

where (w1; w2; : : : ; wJ )′=(e′�̂−1
11 e)

−1�̂−1
11 e and e=(1; 1; : : : ; 1)′. Then �̂0 has the smallest

asymptotic variance among all the linear estimators. Hence
√
m (�̂0 − �0) asymptotically fol-

lows a normal distribution with mean 0 and variance estimated by (e′�̂−1
11 e)

−1. One may also
consider tests based on (11) in which the estimated variance–covariance matrix is computed
under H0.

5. A TRIAL OF CANCER PATIENTS WITH BONE METASTASES

In this section, we used the proposed joint model for interval-censored multivariate recurrent
processes to study the treatment e�ect on the occurrence of bone lesions for patients with
breast cancer metastatic to bone [12]. The three types of bone lesions of interest are (i)
lytic, (ii) blastic, and (iii) mixed, where mixed bone lesions have features of both lytic and
blastic lesions. Let Ni1(t), Ni2(t), and Ni3(t) denote the counting processes for each of these
respective processes. Here we concentrate on comparing the cumulative incidence rates over
the 12 month period following randomization. For this purpose, we considered data on 216
patients who were observed over this period, 109 and 107 of whom were in the treated and
control groups respectively.
Figure 2 displays a sample of pro�les from 6 subjects, here labelled A–F, in the control

group. The vertical bars indicate the times of the radiographic examinations, and the numbers
in parentheses indicate the number of lytic, blastic and mixed lesions developing between
consecutive examinations. Note that some patients were not observed to develop any new
bone lesions (e.g. subjects A and D), some were only observed to develop new lesions of a
particular type (e.g. subject E), and some were observed to develop lesions of multiple types
(e.g. subjects B, C and F). Table I contains a summary of the incidence of the three types
of bone lesions for all patients by treatment group.
Both the random e�ect and marginal models were �t to these data, with a single covariate

xi equal 1 if subject i was in the treatment group and 0 otherwise. For both types of models,
piecewise constant baseline rate functions were adopted with the cut-points for each process
at the 4 months, 8 months, and 12 months from entry into the study. Other sets of cut-points
were considered and all gave broadly similar point estimates and standard errors. The covariate
of interest for each process was the treatment indicator of the new drug, pamidronate. For
the random e�ect model �t via the Gibbs sampling algorithm, we used the model speci�ed
in (3) with J =3. The unknown variance–covariance matrix of the random e�ect ui was
parameterized in terms of the linear predictor as in equation (5), while the random e�ect vi
was assumed to have a completely speci�ed standard multivariate normal distribution. For
the marginal approach, estimating equations (7) and (8) were solved using an initial value
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(F)
(1, 1, 1) (0, 0, 0) (0, 0, 0) (0, 0, 1)

(E)
(1, 0, 0) (1, 0, 0) (2, 0, 0)

(D)
(0, 0, 0) (0, 0, 0) (0, 0, 0)

(C)
(0, 0, 0) (1, 0, 0) (1, 0, 0) (0, 0, 4)

(B)
(0, 1, 3) (1, 0, 0)

(A)
(0, 0, 0) (0, 0, 0) (0, 0, 0)

3 6 9 12 MONTH

MONTHS FROM RANDOMIZATION

Figure 2. Sample pro�le features for various bone lesions.

X0 = (�′
0; R′

0;M′
0)

′. After roughly 15 iterations between equations (7) and (8), Xk converged to
X̂ with the convergence criteria

||Xk+1 − Xk ||
||Xk+1|| 61:0× 10−6 and ||U(Xk+1)||61:0× 10−6

Di�erent initial values of X0 were considered and were all shown to converge to the same
estimate.
Three di�erent models were �t to the data using each modelling strategy, the results of

which are reported in Table II. In Model 1, three separate Poisson process models were �t
for the three types of bone lesions. In Model 2, the data were �t according to three independent
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Table I. Total numbers of new lytic, blastic, and mixed bone lesions by treatment group.

Number Total No. of new Total No. of new Total No. of new
of patients lytic lesions blastic lesions mixed lesions

Control 107 83 36 68
Treatment 109 50 54 47

mixed Poisson models (i.e. without considering the associations between the lytic, blastic and
mixed bone lesion processes). The third type of model, Model 3, addresses both heterogeneity
and association between the three types of processes.
The results from �tting Model 2 via the random e�ect formulation gave coe�cients !11,

!22, and !33 which were all signi�cantly di�erent from zero. This indicates the existence
of strong heterogeneity (extra-Poisson variation) for each process. Wald tests based on the
marginal formulation also suggested all three dispersion parameters are signi�cantly greater
than zero. Moreover, both the random e�ect and the marginal analyses suggest a signi�cant
treatment e�ect on the incidence of lytic bone lesions and a trend towards a reduction in the
development of mixed bone lesions.
The random e�ect and marginal estimates for Model 3 reveal a strong positive association

between the three di�erent types of bone lesion processes suggesting that this is the preferred
model for this data. Using equation (6), one can show that the correlation coe�cient matrix
of log(ui) is estimated as 

1:000 0:964 0:946

0:964 1:000 0:958

0:946 0:958 1:000


based on the random e�ect formulation. The corresponding estimate based on the marginal
model is 1:000 0:938 0:955

0:938 1:000 0:958
0:955 0:958 1:000


The null hypotheses H0 :  12 = 0,  13 = 0, and  23 = 0 are all rejected with p¡0:00001, in-
dicating strong evidence against the null hypothesis that the lytic, blastic and mixed bone
lesion processes are independent. The estimated e�ect of treatment on the development of
new lytic bone lesions remains signi�cant for the random e�ect (RR=0:447, 95 per cent
CI= [0:249; 0:795], p-value=0:0053) and marginal (RR=0:528, 95 per cent CI= [0:306;0:911],
p-value=0:022) models, even when the inter-type association is taken into account. A global
test of the null hypothesis of no treatment e�ect on the incidence of all three types of bone
lesions based on (12) (for the marginal model 3) gives �̂0 = 0:498 with standard error 0.252,
where the weights for the lytic, blastic and mixed lesions were 0.48, 0.08 and 0.44, respec-
tively. The data therefore provide signi�cant evidence (p=0:0481) against the null hypothesis
that pamidronate has no e�ect on the incidence of new bone metastases.
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Figure 3 gives the plots of expected cumulative mean functions for the number of new
bone lesions (lytic, blastic, and mixed) over time (from 0 to 12 months). In each plot, the
marginal cumulative mean functions obtained from the random e�ect model are very close to
the estimated cumulative mean functions obtained from the marginal model estimated using
the generalized estimating equation approach.

6. SIMULATION STUDIES

Consider the setting in which m=200 subjects are randomized to treatment or control groups
in a balanced fashion. Let xi be the treatment indicator taking on the value 1 for treated
subjects and 0 for control subjects respectively. Suppose there are two types of events (J =2)
that may occur over a maximum duration of �=1 year of observation. For the jth recurrent
event process, we take the baseline rate function as ‘Weibull’ with �0j(t)=�jt�j−1 where �j

was chosen so that the expected number of events over the one year period was two for both
types of events. Four cut-points were adopted for the piecewise constant baseline function for
each process and these were located at 0.25, 0.50, 0.75, and 1.00. The data were generated
by following four steps:
Step 1: Randomize subject i to the treatment or control group in a balanced fashion.
Step 2: Generate independent and identically distributed bivariate normal random variables

vi=(vi1; vi2)′, with mean zero and variance–covariance matrix

�=
(
�11 �12
�12 �22

)

and let uij= exp(vij−�jj=2), j=1; 2. This gives E(uij)=1, var(uij)=�2j = exp(�jj)−1, j=1; 2
and a correlation coe�cient between ui1 and ui2 of

corr(ui1; ui2)=
exp(�12)− 1

{exp(�11)− 1}1=2{exp(�22)− 1}1=2

which we denoted by  .
Step 3: Generate event times from a nonhomogeneous Poisson process with rate function

uij�0j(s) exp(xi�j), for i=1; : : : ; 200, j=1 and 2.
Step 4: Generate kij=5 random observation points bij‘’s in (0; �i] for process Nij(t) and

evaluate the total number of events nij‘ in interval (bij; ‘−1; bij‘], ‘=1; : : : ; kij,
j=1; 2.
To examine the �nite sample performance of the estimators of R and M, the marginal model

was �t for each of 500 data sets. The biases of parameter estimators, the empirical type I
errors rates and power for certain hypotheses, and the empirical coverage probabilities of
95 per cent con�dence intervals were assessed.
The above work was closely related to simulations conducted by Lawless and Zhan [8]

for univariate interval-censored recurrent events. Here we therefore emphasized performance
related to the multivariate aspects of the processes, such as the estimation of the correlation
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Figure 3. Plot of cumulative mean functions for the number of new bone lesions.
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Table III. Finite sample properties of regression estimators for the marginal method as a function
of treatment e�ects (�1 and �2), variances of random e�ects (�1 and �2), and correlation of

random e�ects ( ); 500 simulations with sample size m=200.

�̂1 �̂2

e�1 e�2  �1 �2 BIAS∗ CP† %REJ‡ BIAS CP %REJ GLOBAL§

1.0 1.0 0.0 0.25 0.25 0.0035 95.6 4.4 0.0060 95.0 5.0 4.8
1.0 1.0 0.0 0.50 0.25 0.0064 96.0 4.0 0.0043 94.8 5.2 5.4
1.0 1.0 0.0 0.50 0.50 −0.0034 94.2 5.8 0.0064 94.8 5.2 5.8
1.0 1.0 0.2 0.25 0.25 0.0053 94.4 5.6 −0.0038 94.4 5.6 4.4
1.0 1.0 0.2 0.50 0.25 0.0033 93.4 6.6 −0.0052 95.0 5.0 6.6
1.0 1.0 0.2 0.50 0.50 0.0093 95.8 4.2 0.0004 94.8 5.2 5.4

1.5 1.0 0.0 0.25 0.25 0.0024 96.2 95.4 0.0007 94.6 5.4 74.0
1.5 1.0 0.0 0.50 0.25 0.0011 95.4 86.8 −0.0047 95.6 4.4 52.2
1.5 1.0 0.0 0.50 0.50 0.0013 96.2 87.0 −0.0061 95.8 4.2 57.4
1.5 1.0 0.2 0.25 0.25 0.0035 93.4 92.6 −0.0009 95.2 4.8 64.4
1.5 1.0 0.2 0.50 0.25 0.0064 94.6 87.6 −0.0019 94.4 5.4 42.8
1.5 1.0 0.2 0.50 0.50 −0.0067 95.4 83.8 0.0048 93.8 6.2 52.6

1.5 1.5 0.0 0.25 0.25 −0.0011 96.2 95.6 −0.0001 95.2 95.4 99.8
1.5 1.5 0.0 0.50 0.25 −0.0026 95.8 85.8 −0.0084 94.4 92.2 99.8
1.5 1.5 0.0 0.50 0.50 0.0008 95.0 85.8 0.0098 96.8 88.8 99.4
1.5 1.5 0.2 0.25 0.25 0.0005 96.4 96.0 −0.0023 95.4 95.8 99.2
1.5 1.5 0.2 0.50 0.25 −0.0028 95.8 84.6 −0.0080 93.4 93.4 98.8
1.5 1.5 0.2 0.50 0.50 −0.0058 94.4 84.0 0.0051 94.0 84.4 97.2

∗Empirical bias computed as mean estimate minus true value.
†Empirical coverage probability.
‡Marginal empirical rejection rate given as the percentage of simulations for which the corresponding
null hypothesis was rejected.

§Global empirical rejection rate given as the percentage of simulations for which the null hypothesis
H0 : �1 = �2 = 0 was rejected based on the global test statistic.

coe�cients and the global tests. The following four separate null hypotheses: H10 : �1 = 0,
H20 : �2 = 0, H30 : �1 =�2 = 0 and H40 :  =0, were considered in the simulation study.
First, we studied the �nite sample properties of the estimates �̂1, �̂2, and the global test

statistic Q̂, which is the standardized statistic based on �̂0 given by (12). Data were gener-
ated for di�erent con�gurations of exp(�1)=1:0 or 1.5, exp(�2)=1:0 or 1.5,  =0:0 or 0.2,
�21 = 0:25 or 0.50, and �22 = 0:25 or 0.50. A summary of the simulation results based on 500
samples are reported in Table III. In the column headed BIAS, we reported the empirical
biases of estimators for the corresponding parameters �1 and �2. Table III reveals that the
empirical biases for both �1 and �2 are extremely small, suggesting that point estimates for
regression coe�cients perform well for the settings considered. The column headed per cent
REJ displays the percent of simulations leading to rejection of the simple null hypothesis that
the corresponding parameter equals zero based on a Wald test statistic assessed at the nominal
5 per cent signi�cance level. For settings in which the treatment parameter is set to zero, this
empirical rejection rate is the empirical type I error rate. The empirical type I error rates for
the global test statistic under the null hypothesis H30 are reported under the column headed
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Table IV. Finite sample properties of variance and correlation estimators for the marginal method as a
function of treatment e�ects (�1 and �2), variances of random e�ects (�1 and �2), and correlation of

random e�ects ( ); 500 simulations with sample size m=200.

�̂1 �̂2  ̂

e�1 e�2  �1 �2 BIAS∗ CP† BIAS CP BIAS CP %REJ‡

1.0 1.0 0.0 0.25 0.25 −0.0221 95.6 −0.0217 96.0 −0.0028 94.0 6.0
1.0 1.0 0.0 0.50 0.25 −0.0199 93.2 −0.0182 95.4 0.0007 95.4 4.6
1.0 1.0 0.0 0.50 0.50 −0.0180 94.4 −0.0207 95.0 −0.0033 94.4 5.6
1.0 1.0 0.2 0.25 0.25 −0.0195 96.8 −0.0208 95.0 0.0227 94.2 96.6
1.0 1.0 0.2 0.50 0.25 −0.0235 93.6 −0.0227 95.2 0.0133 95.5 90.2
1.0 1.0 0.2 0.50 0.50 −0.0112 93.8 −0.0187 94.2 0.0221 93.6 76.6

1.5 1.0 0.0 0.25 0.25 −0.0132 95.4 −0.0161 94.8 −0.0010 95.4 4.6
1.5 1.0 0.0 0.50 0.25 −0.0205 92.8 −0.0177 95.4 0.0023 93.2 6.8
1.5 1.0 0.0 0.50 0.50 −0.0176 93.8 −0.0117 93.2 −0.0031 94.2 5.8
1.5 1.0 0.2 0.25 0.25 −0.0172 96.0 −0.0221 96.0 0.0175 93.8 98.2
1.5 1.0 0.2 0.50 0.25 −0.0178 94.4 −0.0183 96.6 0.0216 93.4 94.2
1.5 1.0 0.2 0.50 0.50 −0.0237 95.0 −0.0231 95.2 0.0197 95.4 84.6

1.5 1.5 0.0 0.25 0.25 −0.0160 94.8 −0.0170 92.8 0.0044 95.2 4.8
1.5 1.5 0.0 0.50 0.25 −0.0174 93.8 −0.0162 95.2 0.0036 95.6 4.4
1.5 1.5 0.0 0.50 0.50 −0.0172 95.2 −0.0174 96.2 −0.0003 94.2 5.8
1.5 1.5 0.2 0.25 0.25 −0.0162 96.0 −0.0196 94.6 0.0134 95.2 98.2
1.5 1.5 0.2 0.50 0.25 −0.0202 94.4 −0.0162 95.2 0.0196 92.8 94.0
1.5 1.5 0.2 0.50 0.50 −0.0164 95.2 −0.0184 94.8 0.0219 93.4 84.0

∗Empirical bias computed as mean estimate minus true value.
†Empirical coverage probability.
‡Empirical rejection rate for the test of H0 :  =0.

’

GLOBAL in the �rst six rows of Table III. It is clear that all test statistics have type I errors
close to the nominal level of 5 per cent.
For data generated under the alternative hypotheses, the column headed per cent REJ dis-

plays the empirical power of the corresponding Wald tests. Note that as one would expect,
as the variances of the random e�ects increase, the empirical power for detecting departures
from the null hypotheses decreases. Moreover, the power for the global test statistic is some-
what smaller when  =0:2 than when  =0:0. This is a natural consequence of the higher
variation in the numerator of the global statistic resulting from the correlation of the random
e�ects.
Table IV reports the �nite sample properties of the estimators for the variance parameters

�1 and �2 as well as the covariance parameter  . The columns headed BIAS suggest standard
deviations are slightly underestimated, however, all of the empirical biases are less than 0.03.
The biases for  also tend to be small and their absolute values are also all less than 0.025.
The empirical coverage probabilities for the 95 per cent con�dence intervals for parameters
�1; �2; �1; �2, and  are reported in the column headed CP in both Table III and IV. The
empirical coverage is in close agreement with the nominal level in the settings we have
examined.
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7. DISCUSSION

When more than one type of event may recur in a patient, it is often of interest
to investigate the association between di�erent types of processes. This objective becomes
more challenging to meet when the recurrent event processes are interval-censored. In
this paper, we developed joint models for multi-type interval-censored recurrent event
data. We �rst extended the piecewise constant baseline rate models for univariate
interval-censored recurrent events described by Lawless and Zhan [8] to deal with mul-
tivariate processes. Correlated random e�ects were used from genuine multivariate distri-
butions to model the heterogeneity and associations between di�erent processes. A Bayesian
approach using BUGS was adopted to deal with the high dimensional integrals requi-
red to obtain the marginal likelihood. Natural adaptations were made to the esti-
mating equation approach of Lawless and Zhan [8] for inference based on marginal
models.
Both types of models were �t to data from Hortobagyi et al. [12] on breast cancer patients

with bone metastases. In this context, interest was in the treatment e�ect on the development
of lytic, blastic, and mixed bone lesions. Both models suggested that patients in the treatment
group have lower rates of developing new lytic bone lesions, and there was an insigni�-
cant trend towards a bene�t in terms of mixed bone lesions. There was strong evidence of
associations between the three event processes, re�ecting the fact that many breast cancer
patients develop lesions of all three types over time. This represents an interesting clinical
�nding since there have been attempts to classify patients as being primarily at risk of a
particular type of bone lesion based on the types of lesions present at the time of diagnosis
of metastatic bone disease. The strong association between processes suggests that attempts at
such classi�cation are not particularly well-founded. It is of interest to examine whether data
from patients with other primary tumour types (e.g. prostate cancer) are consistent with these
�ndings.
Dean and Balshaw [22] compare the e�ciency of the analysis of recurrent event data based

simply on counts of events over a particular period of observation with analyses which use
the event times. They point out that analyses based on counts can lead to little loss of e�-
ciency compared to analyses based on actual event times when interest lies in estimates of
treatment e�ect, but the baseline rates are far less e�ciently estimated. This �nding suggests
that for settings like the breast cancer trial discussed here, where counts are available from
periodic assessment, the estimates of treatment e�ects should be highly e�cient and the esti-
mates of the baseline rate parameters somewhat better than one would have based simply on
total counts. The relationships between the number of assessments and the e�ciency of the
regression coe�cients, baseline rate parameters, and association parameters warrant further
research.
A considerable amount of attention has been given in recent years to problems involving the

characterization of cumulative processes terminated by death [23]. This work has been carried
out in the context of quality of life studies [24, 25], health economics [26], and recurrent
events [27, 28]. Each of these settings involved continuous observation of the process up until
the time of censoring and so are not amenable to applications involving interval-censored data.
We are currently investigating methods based on weighted estimating functions which may
be used in settings with interval-censored data, as well as adaptations to deal with multiple
types of recurrent event processes.
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APPENDIX A

What follows is background information on the formulation of the random e�ect model nec-
essary for the construction of BUGS program used in the analyses, as well as the BUGS code
itself. As in all BUGS programs, constants are speci�ed in the const line, the var line lists
vector variables used in the program, and initial values are given in inits line. In what
follows the initial values of R;�; and � are set to zero. Data to be analyzed are speci�ed
via variables in the data line. Random e�ects zi1; zi2, and zi3 are generated follow standard
normal distribution. Given the random e�ect uij, the number of type j events for subject i in
the kth interval Rijk is nijk , which is assumed to follow a Poisson distribution. Therefore, we
have the following model speci�cation,

nijk |uijk ∼ Poisson(�ijk)
log �ijk = log�0jk(�) + x′

ijRj + uij

vi1 =!1 × zi1
vi2 =!2 × zi1 +!3 × zi2
vi3 =!4 × zi1 +!5 × zi2 +!6 × zi3
zij ∼Normal(0:0; 1:0); j=1; 2; 3

There are no restrictions on the parameters R, and �, and we use independent normal distri-
butions with means zero and variances 1000 as priors for all of these parameters. One may
consider using a standard noninformative prior for �, however, this speci�cation leads to a
non log-concave sampling distribution [29]. Gilks and Wild [29] suggest handling this prob-
lem by discretizing the prior distribution to create a categorical variable, but monitoring and
summarizing � as if it were continuous. These prior distributions are speci�ed at the end of
the program. In this application, we run the sampling procedure with 10 000 iterations after
a 5000 iteration burn-in.
model bls;
const
B = 80, # number of discrete points for baseline parameters
m = 216, # number of patients
K1 = 4, # number of pieces for lytic bone lesions
K2 = 4, # number of pieces for blastic bone lesions
K3 = 4; # number of pieces for mixed bone lesions
var
trt[m], beta[3], p[B], w[6], Sigma[3,3],indx[m], bmat[m, 28],
n1[m,6],v1[m],z1[m],tau1[m,7,4],rho1[K1],r1[K1],Lambda1[m,7],
n2[m,6],v2[m],z2[m],tau2[m,7,4],rho2[K2],r2[K2],Lambda2[m,7],
n3[m,6],v3[m],z3[m],tau3[m,7,4],rho3[K3],r3[K3],Lambda3[m,7];

data
trt in "trt.dat", indx in "bls.indx",
bmat in "bls.bmat", n1 in "bls.n1mat",
n2 in "bls.n2mat", n3 in "bls.n3mat";

inits in "bls.in";
{
for(i in 1:m) {
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z1[i]~dnorm(0.0, 1.0); z2[i]~dnorm(0.0, 1.0); z3[i]~dnorm(0.0, 1.0);
v1[i] <- w[1] * z1[i];
v2[i] <- w[2] * z1[i] + w[3] * z2[i];
v3[i] <- w[4] * z1[i] + w[5] * z2[i] + w[6] * z3[i];
# process ONE
for(j in 1:(indx[i])) {
for(k in 1:K1) {tau1[i, j, k] <- exp(rho1[k])*bmat[i,K1*(j-1)+k];}
log(Lambda1[i, j])<-log(sum(tau1[i, j, ])) + beta[1]*trt[i] + v1[i];
n1[i, j] ~ dpois(Lambda1[i, j]);

}
# process TWO
for(j in 1:(indx[i])) {
for(k in 1:K2) {tau2[i, j, k] <- exp(rho2[k])*bmat[i,K2*(j-1)+k];}
log(Lambda2[i, j])<-log(sum(tau2[i, j, ])) + beta[2]*trt[i] + v2[i];
n2[i, j] ~ dpois(Lambda2[i, j]);

}
# process THREE
for(j in 1:(indx[i])) {
for(k in 1:K3) {tau3[i, j, k] <- exp(rho3[k])*bmat[i,K3*(j-1)+k];}
log(Lambda3[i, j])<-log(sum(tau3[i, j, ])) + beta[3]*trt[i] + v3[i];
n3[i, j] ~ dpois(Lambda3[i, j]);

}
}
Sigma[1,1] <- w[1] * w[1];
Sigma[1,2] <- w[1] * w[2];
Sigma[1,3] <- w[1] * w[4];
Sigma[2,2] <- w[2] * w[2] + w[3] * w[3];
Sigma[2,3] <- w[2] * w[4] + w[3] * w[5];
Sigma[3,3] <- w[4] * w[4] + w[5] * w[5] + w[6] * w[6];
for(k in 1:6) { w[k] ~ dnorm(0.0, 1.0E-4); }
for(k in 1:3) {beta[k] ~ dnorm(0.0, 1.0E-4); }
for(k in 1:B) { p[k] <-1.0/B; }
for(k in 1:K1) { r1[k] ~ dcat(p[]); rho1[k] <- r1[k]/10.0 - 8.0; }
for(k in 1:K2) { r2[k] ~ dcat(p[]); rho2[k] <- r2[k]/10.0 - 8.0; }
for(k in 1:K3) { r3[k] ~ dcat(p[]); rho3[k] <- r3[k]/10.0 - 8.0; }

}
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